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ABSTRACT
Since 1989, wavelet transform (WT) has attracted much interest of
chemists working on signal and image processing, and the WT-
based techniques have been successfully applied to the chemical
signal processing. This approach has been demonstrated as fast
in computation with localization and having quick decay proper-
ties, in contrast to the popular methods existing, especially to the
fast Fourier transform. More than 370 papers have been published
up to the year 2002 which covered applications of WT in various
fields of chemistry, including analytical chemistry, chemical phys-
ics, and quantum chemistry. In this paper, we report on applica-
tions of WT to data compression, data smoothing and denoising,
baseline and background correction, resolution of multicomponent
overlapping signals, regression and classification, and analytical
images processing in analytical chemistry. Through this report we
wish to induce greater interest of chemists in WT and to obtain
greater benefits from using the WT-based techniques.

1. Introduction
Traditionally, the mathematical technique Fourier trans-
form (FT) plays a very important role in chemistry. It is
commonly used in analytical instruments and in compu-
tational chemistry for signal processing.1 Recently, a trend
has evolved to more vigorously introduce new mathemati-
cal techniques to the chemical studies on signal process-

ing. Over the past decade, a new technique known as
wavelet transform (WT) has been successfully employed
in various fields of chemistry for signal processing.2,3 It
has been proved to be fast enough in computations and
universal in applications, contrary to the popular methods
existing, especially to the fast Fourier transform (FFT).
More than 370 papers were published within the period
from 1989 to early 2002. In these studies, WT was
employed mainly for signal processing in various fields
of analytical chemistry, including flow injection analysis
(FIA), high-performance liquid chromatography (HPLC),
capillary electrophoresis (CE), infrared spectrometry (IR),
ultraviolet-visible spectrometry (UV-Vis), mass spec-
trometry (MS), nuclear magnetic resonance spectrometry
(NMR), electroanalytical chemistry, and X-ray diffraction.
It has also been successfully employed in solving certain
problems in quantum chemistry and chemical physics.

The theory of WT was extensively developed in the
1980s. WT became a popular issue in chemistry and in
the other fields of science after publication of the impor-
tant papers by Daubechies4 (1988) and Mallat5 (1989), in
which the compactly supported orthonormal wavelets and
the fast calculation algorithm were proposed. In 1992 and
later, several excellent reference books on WT were
published.6-8 In recent years, applications of WT to various
fields of chemistry have been introduced by different
workers.9-12

In this paper, a brief introduction to the theory and
algorithms of WT is given, and applications in the field of
chemistry are reviewed to draw chemists’ greater attention
to WT and to gain more benefits from using this tech-
nique.

2. Theory and Algorithms
2.1. Wavelet Transform. Wavelet is defined as the dilation
and translation of the basis function ψ(t), i.e.

where a and b are, respectively, the scale (dilation) and
position (translation) parameters. If a and b are discretized
with a ) a0

j and b ) kb0a0
j (j,k ∈ Z, a0 * 0), respectively,

eq 1 becomes

The wavelet defined by eq 2 is called discrete wavelet,
where a0 ) 2 and b0 ) 1 are generally used. From the
definition, one can tell that the wavelet is a family of
functions derived from a basic function ψ(t). Figure 1
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shows an example of the Symmlet wavelets with each
function being defined by a specific pair of integer (j, k).

In some respects, the wavelet transform resembles the
well-known Fourier transform in which the sine and
cosine are the analyzing functions, while the analyzing
function of the WT is a family of functions, i.e., the
wavelet. The continuous and discrete wavelet transform
(CWT and DWT) of a function f(t) or a signal are given,
respectively, by

and

It can been seen that the only difference between the
definition of the WT and Fourier transform is the analyz-
ing function. Therefore, the underlying philosophy of WT
is a projection of the function or signal to be analyzed
onto the wavelet. The basic idea of WT is to represent any
function or signal as a superposition of wavelets. For
example, the signal as shown in Figure 2a is generated by
the four wavelet functions ψ3,4(t), ψ4,6(t), ψ4,9(t), and ψ5,12-
(t) (Figure 2b), with the corresponding coefficients having
values of

In this way, the signal can be represented by these four
wavelet functions as

In general, any function or signal f(t) can be represented
by a combination of the wavelet functions in the original
domain with the coefficients {Cf(i,j)} as

2.2. Multiresolution Signal Decomposition (MRSD)
Algorithm. Different algorithms have been proposed to
carry out WT. Coifman et al.13 developed the automatic
decomposition method which accelerates the develop-
ment of the wavelet theory. Grossman and Morlet14

proposed the CWT, which allowed decomposition of a
signal into contributions from both the space and the scale
domains, based on two separate processes, namely,
translation and dilation. Mallat5 introduced the algorithm
of multiresolution signal decomposition (MRSD), which
is the one widely used in chemical signal processing and
is described below.

MRSD can be viewed as a recursive operation of
projection, which is graphically illustrated by Figure 3. Let
the whole area of the largest square represent the full
information of the original signal C0. It can be decom-
posed by WT into two parts D1 (the area shaded with
slash) and C1 (the whole area of the second largest square).
D1 is the projection of C0 on the first scale wavelet at the
resolution level j ) 1. C1 can be further decomposed by
WT into two parts of D2 (the area shaded with cross) and
C2 (the whole area of the third largest square). D2 is the
projection of the C1 on the second scale wavelet (j ) 2).
The procedure is repeated until a desired scale J is
reached. In this way, the pieces of information represented
by Cj and Dj are different and correspond to the low
frequency and the high-frequency part of Cj-1. They are
orthogonal to one another.

Equations for computing the signal decomposition and
reconstruction (inverse transform) to get back the original
signal can be found in the work by Mallat.5 The procedure
is depicted by Figure 4, where Cj and Dj are called,
respectively, the discrete approximation and the discrete

FIGURE 1. An example of the Symmlet wavelet basis function (a)
and its derived wavelet (b).

FIGURE 2. A simulated signal (see text for detail) (a) and the wavelet
functions that represent the signal (b).

Wf(a,b) ) ∫-∞

+∞
f(t)ψa,b(t) dt (3)

Cf(j,k) ) ∫-∞

+∞
f(t)ψj,k(t) dt (4)

Cf(3,4) ) 1.0; Cf(4,6) ) 0.3;
Cf(4,9) ) -0.5; Cf(5,12) ) -0.2.

FIGURE 3. A diagram showing the underlying principle of the MRSD.

ψ3,4(t) + 0.3ψ4,6(t) - 0.5ψ4,9(t) - 0.2ψ5,12(t)
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∑
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detail, H and G are discrete filters for the transformation
process. The lengths of vectors Cj and Dj are the same and
are half of that of Cj-1. Algorithms with improved perfor-
mance and wavelet packets transform (WPT) have also
been developed based on that of the MRSD algorithm.3,15

3. Applications of Wavelet Transform in
Chemistry
Among the papers published between 1989 and 2002,16

ca. 75% are related to applications of WT in analytical
chemistry, basically in spectroscopy, chromatography, and
electroanalytical chemistry. WT has been utilized for data
compression, data smoothing and denoising, baseline
correction, resolution of multicomponent overlapping
signals, and processing of analytical images. The remain-
ing 25% of papers are related to quantum chemistry,
chemical physics, etc.

3.1. Signal Compression. Modern analytical instru-
ments produce more accurate and multidimensional
measurements than in the past, thus allowing acquisition
of more abundant information on the samples analyzed.
This is, however, possible only with higher storage capaci-
ties of the instruments, especially when a database library
is needed, e.g., from the field of infrared spectroscopy (IR),
mass spectroscopy (MS), nuclear magnetic resonance
spectroscopy (NMR), etc.17-20 Therefore, data compression
techniques have been developed and extensively used in
the archive of analytical data.

The general procedure of the WT-assisted signal com-
pression can be summarized as follows:
(1) Apply a WT treatment to the original signal and obtain
the wavelet coefficients w ) {CJ,DJ,DJ-1,...,D1} using the
MRSD algorithm (see Figure 4).
(2) Suppress small coefficients in w, which are considered
as too small to contain useful information on the signal
by thresholding methods and to store the suppressed
vector wstore. The number of wavelet coefficients to be
stored is going to be determined by the threshold value,
which results from a preset compression ratio.
(3) The original signal can be reconstructed, when needed,
by applying the inverse transform to the stored vector
wstore.

Figure 5a gives an NMR spectrum of a biological
molecule with 32 768 data points.20 The wavelet coef-
ficients w ) {CJ,DJ,DJ-1,...,D1} obtained by applying WT
to the spectrum with the Symmlet wavelet filters and J )
9 are shown in Figure 6. For an easier orientation, data
points which are outside the range of (0.01 are clipped.
It was found out that almost all the coefficients in
{D9,D8,...,D1} (32704 points) are very small compared to
the coefficients in {C9} (64 points). There are only 126
coefficients with absolute values larger than 0.01 in
{D9,D8,...,D1}. Therefore, the main information on the
spectrum should be sufficiently represented by 190 wave-
let coefficients only. Spectra shown in panels b, c, and d
of Figure 5 are reconstructed from 2048, 1024, and 512
wavelet coefficients, respectively, and it can easily be
noticed that there is almost no difference among them.
The RMSE (root-mean-square error) of the curves shown
in panels b, c, and d of Figure 5 with panel a equals to
1.3642 × 10-4, 1.6977 × 10-4, and 2.7769 × 10-4, respec-
tively.20

WT is a very efficient method of compression of
individual signals, but the set of signals can be compressed
to the highest degree by principal component analysis
(PCA). Principal components, maximizing description of
data variance, are constructed as a linear combination of
the original features and have global properties. Applica-
tion of FFT to simultaneous compression of a set of signals
usually offers no advantages at all, due to the fact that
compression is less efficient, compared to PCA, and the
constructed features are also global. Only compression of

FIGURE 4. A diagram showing the operation of the MRSD method.
The slanting line represents the coefficients to be stored.

FIGURE 5. A measured NMR spectrum (a) and the reconstructed
spectra from the 2048 (b), 1024 (c), and 512 (d) coefficients.20

FIGURE 6. Wavelet coefficients corresponding to the NMR
spectrum in Figure 5.20
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a set of signals in the wavelet domain, although less
efficient than PCA, offers features with local properties that
can be of great interest for further data processing.

Simultaneous compression of m signals with the aid
of DWT can be described as follows:
(1) Decompose m signals with the selected filter and
organized wavelet coefficients in the matrix form, W.
(2) Calculate variance vector, elements thereof represent-
ing variance of wavelets coefficients in individual columns
of matrix W.
(3) Compress matrix W to the columns associated with
these coefficients, for which the highest variance is
observed.

Successful applications of WT and WPT in data sets
compression can be found in the literatures.18,19

Although WT is an efficient data compression tech-
nique, its performance can further be enhanced, if it is
combined with the other relevant compression tech-
niques. New models based on WT were proposed for data
compression, such as the wavelet neural network (WNN)21

and the recurrent neural network (RNN).22 Preprocessing
of the data sets by WT and WPT before using them in the
other chemometrical methods (such as WFA, KNN, and
SIMCA) was also studied. All the results obtained point
out to the fact that WT and WPT are both preprocessors
of high performance, yielding features with local proper-
ties.

3.2. Signal Denoising. Denoising is a problem of
interest in all fields of science and technology, and a large
number of filtering methods (such as Fourier filtering
method, Savitzky-Golay smoothing method, and Kalman
filtering method) have been developed.23

The philosophy underlying denoising with aid of WT
is generally considered as resembling the traditional
Fourier filtering, in which the high-frequency components
are cut off by the low-pass filters. However, in the Fourier
filtering the assumption is made that the frequency
components of the signal are present mainly at low
frequencies and those of the noise at high frequencies.
This assumption is fulfilled for stationary signals, although
not in the case of unstationary signals. Unstationary
signals can have the high-frequency components as well
and require decomposition in local basis, such as wavelet
basis.

The general procedure of denoising with wavelet
analysis is summarized as follows:
(1) Apply WT to a noisy signal fnoisy and obtain wavelet
coefficients, w.
(2) Suppress these elements in w, which are considered
as attributing noise by the thresholding methods of
denoising.
(3) Apply the inverse transform to the suppressed w, to
obtain the denoised signal fdenoised.

Two different approaches for suppression of the ele-
ments in w are generally used in wavelet denoising, i.e.,
hard thresholding (simply setting all wavelet coefficients
below a certain threshold to zero) and soft thresholding
(reducing values of all wavelet coefficients toward zero
by the threshold value). Various methods are used to

estimate the threshold and to perform the threshold-
ing,18,23,24 such as the simple hard and soft thresholding,
SURE, VISU, HYBRID, MINMAX, etc.

Figure 7 offers a comparison of the data denoised by
several thresholding methods, including the Daubechies
wavelet. The plot shown in Figure 7a is a smoothed
chromatogram, and to the plot given in Figure 7b, random
noise was added. The curves shown in Figure 7c-i
characterize the effect of application of the various de-
noising methods. From Figure 7 it can be seen that almost
all the results are similar, and except for the plots given
in Figure 7d,f, for which some artifacts are observed.

To improve signal denoising, i.e, to reduce such
artifacts, Coifman and Donoho25 developed a translation-
invariant denoising method, able to average out the
mismatch between the signal and the analyzing wavelet.

The WT technique has been shown as a very powerful
denoising tool for unstationary signals. So far, it has been
applied to denoising IR spectra,26 chromatograms,27 capil-
lary electrophoresis signals,28 near-infrared diffusive re-
flectance spectra,29 oscillographic chronopotentiometric
signals,30 deconvolution voltammetry signal,31 and also
many other data sets. On-line denoising of instrumental
signals using an on-line WT technique,32 application of
WPT to denoising,33 and usage of the WT denoising as a
preprocessor of the other chemometrical methods have
been studied.4,5 Techniques for denoising in the instru-
mentation software packages and for removing the noise
in very sharp peaks were also developed.34

3.3. Baseline/Background Correction. Baseline drift is
a very common problem in analytical chemistry. In many
cases, the baseline drift in analytical signals is just like
the noise which often causes difficulties with the further
data processing. However, the baseline is different in
properties from the noise in the sense that the frequency
of the drifting baseline is always considerably lower than
that of the signals to be analyzed. According to the theory
of wavelet decomposition, the baseline component in an

FIGURE 7. A comparison of the various thresholding methods in
wavelet denoising of a signal with random noise.3 (a) A smoothed
chromatogram, (b) signal a with 10% of random noise, and the
denoised signals by (c) hard thresholding with the threshold being
2.0% of the maximal wavelet coefficients, (d) SURE, (e) VISU with
hard thresholding, (f) MINMAX, (g) soft thresholding with the
threshold being 1.0% of the maximal wavelet coefficients, (h) HYBRID,
and (i) VISU with soft thresholding.
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analytical signal should be easy to separate from drifting
signals.

First application of the method involved separation of
the drifting baseline from a chromatogram acquired via
gradient elution.35 In this work, an experimental signal (C0)
was decomposed into the discrete details Dj and the
discrete approximations Cj by using an improved MRSD
algorithm. It was found that there is one discrete ap-
proximation (C8) resembling the drifting baseline. The
baseline was removed by C0 - f × C8(f is a factor and f )
0.93 was utilized).

Considering the importance of the removal of the
baseline from a chromatogram, it is even more important
to separate the background from the experimental spec-
trum of the extended X-ray absorption fine structure
(EXAFS) because no useful information can be obtained
from the raw spectra. Two approaches were proposed for
this purpose, one following the above procedures and
another one based on the MRSD algorithm.36

Furthermore, a WT-based method for the removal of
the background of 2-D analytical data sets (such as HPLC-
DAD37), application of WT to the background removal
from NMR spectra,38,39 and application of WT to NIR
spectral data to deal with nonconstant background for
multivariate calibration40 were also reported.

However, application of the WT in baseline/back-
ground removal can only be performed in the limited
cases because the properties of the baseline or background
are different in various analytical signals. For example, for
processing of spectroscopic signals, a time-frequency
approach would be more suitable than the time-scale
analysis tool (i.e., the WT).41

3.4. Peak Detection and Resolution Enhancement.
Both peak detection and resolution enhancement are
universal problems in analytical chemistry. Mathematical
techniques are badly needed by analytical chemists in
order to resolve overlapping chromatograms, low-resolu-
tion spectra etc. Usually, such problems are solved by
using linear or nonlinear regression analysis, curve-fitting
techniques, derivative techniques, neural networks, and
factor analysis. Owing to the favorable characteristics of
WT, applications of the multiresolution technique to
resolution enhancement and peak detection in analytical
signals were widely studied.42-45

The derivative technique is a powerful method, gener-
ally used to resolve overlapping analytical signals because
it offers higher resolution of the differential data, com-
pared to original data. Although the technique proved very
useful in data analysis, it has a major drawback in
increasing the noise level in calculations of the higher-
order derivative. Therefore, a method, which utilizes WT
for the approximate derivative calculations, was pro-
posed.42 This method can enhance the signal-to-noise
ratios for calculations of the higher order derivatives, and
at the same time, it retains all major properties of the
conventional methods. An approximate first-derivative of
an analytical signal can be expressed as the difference
between the two scale coefficients CJ-l, which are gener-
ated from any two Daubechies wavelet functions at

different scale. The higher order approximate derivatives
can also be obtained from the previous order derivative.

Figure 8 furnishes a comparison between the results
obtained by the WT method and by a conventional
method from a simulated signal, which is generated by
the Gaussian, Lorentzian and Sigmoid functions with an
added white noise. The noise level equals to 0.0002 (SNR
equals to 2500). It is evident that the signal-to-noise value
for the results obtained by WT is much better than that
obtained by the conventional method.

Another method for estimation of an approximate
derivative based on CWT with the Haar wavelet was also
proposed.43 Owing to the characteristics of the Haar
wavelet function, the approximate nth derivative of an
analytical signal can be obtained by applying WT n times
to the signal. The results obtained by employing the four
methods (i.e., the conventional numerical differentiation,
the Fourier transform, the Savitzky-Golay, and the WT
method) were compared with the CWT approach. It was
demonstrated that all the results are closely similar for
signals not contaminated with noise. But for noisy signals,
the CWT method is superior to the three remaining ones.
Figure 9 shows the approximate first and second derivative
of the photoacoustic spectrum of Pr(Gly)3Cl3‚3H2O, ob-
tained using the CWT method. It can easily be seen that
the results are satisfactory.43

Various resolution methods have been reported for
resolution of multicomponent overlapping analytical sig-
nals, such as Fourier self-deconvolution (FSD), Fourier
derivation (FD), and factor analysis. Since WT can easily
be used to decompose a signal into components having
different frequencies, the resolved signals should be
retrievable by WT decomposition of overlapping signals.

Two approaches were proposed for resolution of
overlapping signals, using the WT decomposition and

FIGURE 8. A simulated signal (a) and its first derivative (b and c),
as well as the second derivative (d and e) obtained by the WT
method and by conventional method, respectively.
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reconstruction procedures. The first approach includes the
following two steps:44

(1) Use WT to decompose an overlapping signal to its
components (approximations and details). The compo-
nent at a different wavelet scale will be in a different
frequency.
(2) Select a decomposed component by visual inspection
at the medium wavelet scale, which represents the re-
solved information.

Then directly use the selected component for a further
study, such as elucidation of the spectra for spectral
analysis and the area calculation for quantitative deter-
mination.

The second approach is based on the WT decomposi-
tion and reconstruction;45 i.e.,
(1) decompose the analyzed signal to its components and
select one or more components, which represent the
resolved information,
(2) multiply the selected components by a factor k with a
value higher than 1.0, and
(3) construct the analyzed signal by using the reverse
transform.

It is evident that the essence of the approach is to
increase the resolved information into the overlapping
signal.

A successful example on application of the first ap-
proach to resolve overlapping analytical signals was
published in Analytical Chemistry.44 Chromatograms of a
mixture of samples composed of differentiated concentra-
tions of benzene, methylbenzene and ethylbenzene were
investigated. Employing the D3 component obtained by
using the WT decomposition with the Haar wavelet, the
three peaks could be well resolved and very good calibra-
tion curves with peak areas versus the concentrations were
obtained.

Using exactly the same approach, the WPT resolution
and quantitative determination of heavily overlapping
chromatograms were also studied.46 It was found that WPT
performs better than the WT approaches. Furthermore,
this method was also employed for detection of the
number of components in overlapping chromatograms.47

The number of components can easily be determined just

by counting the number of the positive peaks in the data
resolved by WT processing.

As a good illustration of the second approach for
overlapping signals, resolution of the NMR spectra was
studied.45 Figure 10 shows a part of the results, in which,
the curves a, c, and e represent the three experimental
spectra of a biological sample with different resolutions
and curves b and d are resolved results from curves a and
c, respectively, via components D1 and D2 with k ) 10. It
can easily be seen that resolution is greatly improved by
the wavelet treatment.

Although the procedures above have been successfully
used for resolution of overlapping signals in several cases,
there are still problems and limitations in practical uses,
such as the effects of the wavelet filters and the largest
decomposition scale J on the WT transformed result. They
have not been proved as a general approach for obtaining
any kind of analytical signals. Further studies are still
needed.

3.5. Calibration, Regression, and Classification. Sev-
eral methods for modeling of the high-dimensional spec-
tral data have been proposed, including the principal
component regression (PCR) and the partial least square
(PLS) method. PLS coupled with the feature selection in
the wavelet domain was reported and successfully applied
to the analysis of the NIR spectra of polyether polyols,
pharmaceutical tablets, and gasoline samples.48

For classification and regression, an adaptive wavelet
algorithm (AWA) employing the higher multiplicity wave-
lets was proposed,12 allowing a procedure to stepwise
design the specific filter coefficients by an adaptive
iteration. Defining the novel classification criterion func-
tion and the regression assessment criterion, classification
of the seagrass, para-xylene, and butanol samples with
aid of the NIR spectra was attained, and the regression
studies aiming at quantification of the components in
sugar and wheat were performed.12

FIGURE 9. The photoacoustic spectrum of Pr(Gly)3Cl3‚3H2O (a) and
its first derivative (b) and second derivative (c) obtained by the CWT
method.43

FIGURE 10. A comparison of the experimental NMR spectra and
their resolved results. Curves a and c are the experimental spectra
with low resolution, curves b and d are the resolved results from a
and c, respectively, and curve e is the experimental spectrum with
the best resolution.45

Wavelet: A New Trend in Chemistry Shao et al.

VOL. 36, NO. 4, 2003 / ACCOUNTS OF CHEMICAL RESEARCH 281



New methods based on WT or WPT were also devel-
oped recently. By using the WPT decomposition and
reconstruction from selected coefficients, a WPTER (wave-
let packet transform for efficient pattern recognition of
signals) method was proposed and successfully applied
to a data set consisting of X-ray diffractograms on fired
tiles subjected to different firing cycles.49 Discriminant
analysis of the ion mobility spectrometry (IMS) was
achieved by combining the WT compression and a
regularized version of linear discriminant analysis (LDA).50

3.6. Analytical Image Processing. A vast number of
papers have been published on applications of WT or WPT
for image processing. These include denoising, compres-
sion, image coding, feature selection, etc. In the field of
chemistry, application of WT in an analytical image
processing was also reported.51,52 In these papers, denois-
ing, compression, feature extraction, registration and
fusion of the 2-D and 3-D secondary ion mass spectrom-
etry (SIMS) and electron probe microanalysis (EPMA)
images were studied, via the 2-D and 3-D wavelet trans-
form.

4. Conclusion
Since 1989, various possibilities of applications of WT to
the different fields of chemistry have been investigated.
Apart from the studies mentioned in this paper, other
papers have reported the applications of WT in chemistry
such as, e.g., an online detection of transitions in the time
series, fractal structure analysis, protein sequences analy-
sis etc. These studies have proven that the WT-based
techniques are very efficient and therefore they can play
an important role in the chemical signal processing. The
authors hope that this paper will stimulate broader
interest in applications of WT. Further investigations on
the topics are still proceeding, and the WT techniques are
expected to gain popularity among chemists in the future
as a widely used approach.
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Note after ASAP Posting
This article first appeared on the web on 2/7/2003 with
errors in Figure 6 and the text. The correct version was
published on 2/14/2003.
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